Tutorial - Symbolic Regression.
- invoke 'gool' from the main 'jrgp' directory, specifying the project
'
examples/symbolic_regression
' as option at command
line;
- open the 'prj directory' subtree and select in the
'
symbolic_regression.Regr
' node [corresponding to
Regr.class
whose source file is Regr.java
in the
same dir] all the methods but the 'cut' one (it is an helper function); use
the context popup option 'to gp-function' to extract them as GPFunction
subclasses;
- select the newly created java classes and copy them in the 'function
pool' node, via the popup options [copy&paste] or the key
shortcuts;
- open the 'parameters factory' and copy the functions nodes from the
'function pool' into the 'function set';
- use the 'arguments' node 'add arguments...' option to add one
'
NO_TYPE
' argument: the programs take in this application one
argument corresponding to the x evaluation point;
- set the 'evaluator' node with the 'set...' popup option to the file
'
RegrEvaluator.class
' [source file
RegrEvaluator.java
in the same dir];
- create a population of 1000 individuals by selecting 'create population'
from the 'parameters factory' popup;
- you can now modify the population parameters from the
'_population0/parameters' node. Turn for example the overselection option
'ON'; parameters changes become effective through 'force changes' popup
option or at next generation run;
- run the population for one or more generations with the corresponding
options in the population node;
- try now to remove the 'FConst' function from the 'parameters/function
set' subtree [delete popup option] and then run the population again.
Note: you can quit gool using the 'exit' popup option of
'gap' node.